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LONGITUDINAL STABITLITY AND CONTROL CHARACTERISTICS OF A
SEMISPAN WIND-TUNNEL MODEL OF A TATTLIESS ATRPLANE AND
A COMPARISON WITH COMPLETE-MOIEI. WIND-TUNNEL TESTS
AND SEMISPAN-MODEL WING~FLOW TESTS

By Kenneth W. Goodson and Thomas J. XKing, Jr.

SUMMARY

An Investigation was conducted on a semispan model of a tailless
alrplanse in the Langley high-speed T7- by 10-foot tunnel in the Mach number
range fram 0.40 to 0.97. The results are compared with those obtailned
wlth a sting-mounted complete model tested 1in the same tummel and with a
semigpan modsel tested by the wing-flow method.

The lift-curve slopes obtalned for the semispan model and the wing-
flow model were in good agreement but both were generally lower than the
values obtainsd for the sting model. The results of an unpublished
Investigation have shown that tunnel-wall boundary-layer and strut-leakage
effects can cause the difference noted between the 1ift-curve slopes of
the sting and the semispan date.

Falr agreement was obtained among the date of the thres models as
regards the variation of pltching-moment coefficients with 1ift coefficilent
for various elevator deflections. In the Mach number range between 0.94
and 0.97, control reversal wes indicated in the wing-flow data near zero
1lift; whereas, these same trends were Indicated in the larger scale semi-
span data at somewhat higher 1ift coefficients.,

A1l three test methods Indicated a stable varlation of control
deflectlion with Mach number up to a Mach number of about 0.87 at an
altitude of 30,000 feet and for a wing loading of 28. At higher Mach
numbere all three methods also Indicated a tucking-under itendency of
gimilar abruptness aend magnitude.

Tests of a 10-percent-span spoiler located on the 35-percent-chord
line of the 1ower wing surface inboard of the vertlcael tall was equiva-
lent to about 4° of negative control deflection In the high-speed range
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where trim changes were encountered and, therefore, might be desirable
for uge as a means of auxiliary control.

INTRODUCTTION

A number of investigations have been conducted &t high subsonic and
transonic Mach numbers with various models of a tailiess alrplane. Data
have been obtained on & complete model mounted on & sting support in the
Langley high-speed T- by 10-foot tunnel (reference 1)} and on a ssmispan
model utilizing the NACA wing-flow method (unpublished). In order to
obtain data at higher Mach numbsrs than were reached with the sting-
supported model, one-half of this model was tested as & reflection-plane
model 1in the Langley high-speed T- by 10-foot tunnel. The purpose of thils
paper is to present these date and to compere the results with those
obteinad by other methods. '

COEFFICIERTS AND SYMBOLS

The system of-axes used for the presentation of the data, together
with an indicatlon of. the positlve forces, moments, and angles, 1s presented
in figure 1. Pertinent symbols are defined as follows:

C 11f% cosfficient (Lift/qs_)

Cp drag coefficient (Drag/qS)

Cn ﬁitehingemoment coefficient, measured about l7-percent mean
aerodynemic chord (Pitching moment/qSc')

Lift = ~Z

Drag = -X (only at ¥ = 0°)

X force along X-axis, pouﬁds

Z force along Z-axils, pounds

M pltching moment, pound-feet

q free-stream dynamic pressure, pounds per square foot (pV2/2)

P mass density of alr, slugs per cubic foot

v free-stream veloclty, feetper second
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M free-stream Mach number (V/a)

a speed of sound, feet per second

s : wing area (3.17h4 sq £t on complete model)

c'! mean aerodynamic chord (1.046 £t on model)

a.c. : aerédynamic center

c chord parallel to plane of symmetry

cy chord perpendicular to 0.25¢c line

o angle of attack, measwred from X-axis to fuselage center linme,
degrees

R Reynolds number (pVe'/p)

B absolute viscosity of ailr, pounds-second/feet?

Bg control-surface deflection with reference to wing chord line

parallel to plane of symmetry, degrees
MODELS AND APPARATUS

A semispan model of a tallless airplane was used to obtaln the basic
gemispan data presented In thls paper. The model was made by utllizing
one-half of a complete model (reference 1). However, inasmich as the
original fuselage was of so0lid steel construction, a half-fuselage was
caest of blsmuth-tin alloy for use in these tests. The control surfaces
were of constant chord with sealed gaps. Drawings and photographs of the
model are presented In figures 2 to k. Details of a 10-percent-spen
gpoller located on the 35-percent-chord line of the lower wing surface
inboard of the vertical tail are shown In figure 5. All models used in
the comparlson incorporated duct lnlets.

TESTS AND RESULTS

Test Conditions
The variation of test Reynolds number with Mach number for average
test conditions is presented in figure 6. The degree of turbulence of

the tunnel 1s not known but 4ds belleved to be small because of the high
contraction ratic of the tunmel (15.7:1). The size of ‘the model used in
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the present investigation leads to an estimated choking Mach number
of 0.95 based on one-dimensional-flow theory. However, inasmuch as no
evidence of any choking phencmens was apparent even at a tunnel Mach
number of 0.95, the semispan date are presented for the highest Mach
numbers obtalned for the sake ofcomparison with the wing-flow date.

The greeter part of the semilspan wind-tunnel teste were made for the
complete model configuration for several control deflections. A limited
amount of data wdre obtained with the vertical fins off at-zero control
deflectlon.

The tests were made wlth the fuselage partially submerged in ths wall
boundary layer and with some leakage around the support strut. The
tunnel-wall boundary-l&yer thlckmess was about 2.5 Inches based on 95 percent

of free-sitream veloclity. The leakage through a -]é-inch gap around the model
gupport was minimized by using the fuselage as an end plate.

Corrections

Jet~boundary corrections to the 1ift and drag measurements were
determined by the method of refersence 2. All coefficliente and Mach numbers
were corrected for blocking by the model and its wake (reference 3). The
Mach number blockage correction veried from 1.004 at M = 0.6 +to 1.040
at M = 0.95. The sting pltching-moment data have been corrected for the

additional tare correction glven on page 10 of reference 1.

Presentation of Results
A table of the figures presenting the results is given below:

I. Bagic Semispan Model Data

Flgure
A. Longitudinal characteristics, fins on T to 8
B. Longitudinal characterlstics, fins off 9
C. Effects of spoller deflection, fins on 10

IT. Comparison of Semispan, Sting, and Wing-Flow Data
A. Variation of ( BGL /&)M with Mach nunber, fins on 11
AN

B. Variation of ( acL/am)M with Mach number, fins off 12

C. Variation of G'GL=O with Mach number, fins on 13
D. Variation of ag o with Mach number, fins off RN
1, .

E. Variation of Cp with Mach number, fins on 15
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F. Variation of Cp with Mach number, fins off 16
G. Veriation of (Xp/3r)y With Mach mumber, fins on 17
E. Variation of (3m/XL)y with Mach mumber, fins off 18
I. Variation of CI“CL=O with Mach number, fins on 19(a)
J. Variation of CmcL _o Vith Mach number, fins off 19(b)

K. Basic stability and control chearacteristice, fins on 20 and 21

L. Control deflectiom for trim; g = 28,
altitude 30,000 feet 22

DISCUSSION
Bagic Semispan Wind-Tunnel Data

Basic asrodynamic characterigtics.- It 1s noted that there is a
small reductlon in lift-curve slope in the low-1ift range (figs. 7 and 8).
This nonlinearity In the 1i1ft curves is attributed to tumel-wall boumdary-
layer and strut-leaskage effects which are discussed later in the portion
of the paper dealing wlth the comparison of these data with those obtained
by other methods. The data also indicate a reversal in control effectiveness
for small control deflections at a Mach number of 0.96 (fig. T(1)). The
control revéersal appears to.occur outside a practical fiight range and
should not be serious.

Spoiler controls.- Lower surface spollers (fig. 5) were investi-
gated as an auxilisry control device to be used in the event of loss of
control in the high Mach range. The data (fig. 10) show that the spoilers
have & negliglible effect on the 1ift characteristics whille producing an
appreciable nosing-up pitching-moment increment throughout the entire
1lift and Mach number renge. The uss of these spollers ag a mesns of dilve
recovery might be desirable in the high-speed range where the control
effectiveness is greatly reduced. A+t a Mach number of 0.94, for example,
the spoller effectiveness is equivalent to about 4O of negative control
deflection.’

No drag data are presented for the spoller tests (fig. 10) because
of difflculties encountered with the drag balance,
Comparlison wlth Sting Data and Unpublished Wing-Flow Data

Lift characteristics.- It is ssen from the variation of lift-curve
slope (low-1ift range) with Mach number that there is good agresment
between the data of the semigpan model and wing-flow model for both finas
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on and off (figs. 11 and 12). However, the data obteined with the sting-
mounted model indicate substantielly larger lift-curve slopes over most

of the Mech number range perticularly with fins on. The results of an
unpublished investigation using the complete semispen model of the tailless
alrplane has shown that tunnel-wall boundary-layer and strut-leaksage
effects can cause the dlfferences noted between the lift-curve slopes

of the sting and the semlspan data. Although these tests were made with
the complete model, similar results could be expected for the model
without vertical fins. The simiiarity of trends for the fins-on end fins-
off data 1s evident from flgures 11 and 12. The boundary layer on the F-51
wing-flow test vehlcle was much smeller relative to the size of the
wing-flow model, but indications are that the effects of leakage around
the bage of the model were appreciablg. The Reynolds number for the wing-
flow model varied from about 1.0 X 10° &t the lowest Mach numbers +to

2.0 X 10° at the highest Mach numbers. '

The angle of attack for zero 1lift as obtalned by the three testing
techniques 1s In fairiy good agreement for the vertical fins-off condition
(fig. 1h4). With the vertical fins on (fig. 13), G =0 OCCUrs at aboutb

0.6° higher angle of attack for the semispan model than for the sting modsl
over most of the Mach mumber range. At the highest Mach numbers, how- '
ever, “CL=0 decreasges to values more comparable to the sting data. The

wing-flow data agree falrly well with the sting data at the lower Mach
mumbers but ag . 1s about 0.5° higher than the sting value at M = 0.90.

Drag characteristics.- It 1s seen from figures 15 and 16 that although
the drag coefficlent fat constant CL> is generally somewhat higher for the

gemispan model, the drag rise occurs at essentlially the same Mach number as
for the sting model. No dreg date were avallable on the wing-flow model.

Pltching moment at zero 1ift.- Up to & Mach number of 0.91 all three
methods are in falr agreement regarding the variation with Mach number of
the pltching-moment coefficlent at zero 1ift for the complete model |
(fig. 19(a)). Witk fins removed (fig. 19(b)) the data for the sting and
semispan model show excellent agreement. The results for the semlspan
model appeared to be especlally influenced by flow changes over the
portion of the wing between the fuselage and the fin. These flow changes
were brought about by different interaction effects of the boundary layer,
leakage, and flow induced by the fin itself. From a comparison of the
angle of zero 1ift, the lift-curve slopes, and the pltching moment at zero
1lift, 1t appears that these various Interaction effects on the semlspan
model were less severe for the fin-off configuration.

There are known to be same slight differences between the wing-flow
model and the wind-tunnel model due to constructional lnaccureacies, and
these differences, together wilth the indeterminate leakage-condition at
the root of the wing-flow and semlspan models, mey be pertielly respomsible
for whatever dlfferences are noted in the camparison of the data.
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Stability end control.- The curve of (BCE/BCL)M at low Cp, for the

complete semispan model (fig. 17) indicates -an almost constant aerodynsmic
center at sbout 23.5-percent mean serodynemic chord up to M = 0.85.
Between a Mach number of 0.85 and 0.96 there is a large stabilizing shift
in the aserodynaemic-center location of about 10-percent meen asrodynemic
chord. The sting data Indicate an asroiynamic-center locatlion generally
about 2.0-percent mean aerodynamic chord pore rearward of the basic semi-
span data; whereas, the value of (acm/BCL y for the wing-flow model

generally falls between the other two models. The large rearward aerodynamic-
center shift is evident in the curves for all three models above a Mach
number of 0.85. The agreement in (BCm_/ BCL)-M between the various test

methods 18 not quite as good for the vertical fin-off conditiom (fig. 18).

The control effectivensss (acm/aaa at Cr, =0 and for small control
deflections 1s 1n good agreement for the various test methods up to
M = 0.91. At the highest Mach numbers a reversal ln effectiveness 1is
indicated from both the wing-flow and the larger scale semispan data.
(See figs. 21 and 7(1).) The reversals in the semispaen data however occur
at higher 1ift coefficlents than the wing-flow data and for elevator
deflections outside the trim range. :

The control deflection requlred for level flight at an aeltitude of
30,000 feet end a wing loading of 28 was computed from the data of the
various models In order to evaluate the magnitude of trim change Indicated
at high subsonic speed (fig. 22). The variation of S&trim wlth Mach

number for the sting and semispan models was in good agreement, and forwerd
stick movement was required to affect increases in spesd up to M = 0.87.
Above thls Mach number a tuckling-under tendency ie menifested. Note that
in the Mach number range between 0.95 and 0.975 the wing-flow model could
be trimmed at several values of &gz. This was caused by the reversal of
c(:on‘brol effectiveness at the high Mach numbers on the wing-flow model

fig. 21).

CONCLUSIONS

An Investigation was made to determine the aeroiynamic characteristics
of a semlspan model of & taillless alrplane and to compare these results
with avallable date on the tailless slrplane from an Investlgatich of a
complete wind-tunnel model and a semispan wing-flow model. These data
indicated the following concluglona:

1. The lift-curve slopes obtalned for the semlispan model and the
wing-flow model were in good agreement, but both were generally lower
than the value obtained for the sting modsl. The resvlts of an impub-

lished investigation have shown that tunnel-wall bowmdary-layer and
- strut-leakage effects can cause the differences noted between the 1lift-
curve slopes of the siing and the semispan data.
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2. Falr agreement was obtained between the data of . the three models
as regards the varlation of pitching-moment coeffilclent with 1ift coeffi-
clent for varlous elevator deflectlons. However, in the Mach mumber range
between 0.94 and 0.97, control reversel was indicated in the wing-flow
date near zero 1ift; whereas, these same itrends were indicated in the
larger scale semispan data at samewhat higher 1ift coefficlents.

3. Good sgreement was obtalned for the semispen and sting models in
regard to the drag rise Mach number. The absolute drag coefficlents, how-
ever, were somewhat higher Ffor the semispan model thamn for the sting model.

4, A1l three test methods indicated a stable variation of control
deflection with Mach number up to & Mach number of about 0.87 at an alti-
tude of 30,000 feet and for a wing loading of 28. At higher Mach numbers
all three methods also indicated a tucking-under tendency of similﬂ.r
abruptness and magnitude,

5. Tests of a l0-percent-spen spoiler located on the 35-percent-
chord line of the lower wing surface inboard of the vertlcal tell on the
semispan wind-tunnel model were found to be equivalent to about 4° of
negative control deflection throughout the Mach number range and may be
useful as an auxiliary control in the transonic range. )

Langley Aeronauticel Laboratory
National Advisory Commnitiee for Aercrautics
Iangley Air Force Base, Va.
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Figure l.— System of axes and control-surface deflectlons. Poaltive
values of forces, moments, and angles are indicated by arrows.
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Figure 3.— The semispan model of & tallless airplane with vertical fin
on, mounted on the Langley T— by 10-oot high—speed tunnel ceiling.
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Figure 5,— Drawlng showing location and size of spoller on lower surface
of the wing of the semispan model of a tailless alrplene,
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Figure T.— Continued.
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